Mark schemes

Q1.
(a) Bright light / white light / white powder/ash/solid
$\mathrm{Mg}(\mathrm{s})+\mathrm{H}_{2} \mathrm{O}(\mathrm{g}) \rightarrow \mathrm{MgO}(\mathrm{s})+\mathrm{H}_{2}(\mathrm{~g})$ State symbols essential
(b) M1: Attraction between (lattice of) Mg^{2+} ions

M1 attraction between nucleus and delocalised electrons or between + ions and delocalised electrons

M2: And delocalised electrons
M2 outer shell electrons delocalised
(c) (Giant) ionic lattice / lots of Mg^{2+} and Cl^{-}ions

Strong (electrostatic) forces of attraction

Between Mg^{2+} and Cl^{-}ions
Allow oppositely charged ions
(d) Indigestion relief / laxative / neutralise (excess stomach) acid Allow milk of magnesia

Q2.
C
In medicine to produce an X-ray image

Q3.
(a) Mg^{2+} has a higher charge than $\mathrm{Na}^{+} / \mathrm{Mg}^{2+}$ ions are smaller $/ \mathrm{Mg}^{2+}$ has a greater charge density / Mg atoms smaller than Na atoms / Mg has more delocalised electrons than Na

Allow
Mg has a higher nuclear charge

Stronger attraction to delocalised sea of electrons / stronger metallic bonding

Not attraction for outer electrons
(b) $2 \mathrm{Mg}+\mathrm{TiCl}_{4} \rightarrow 2 \mathrm{MgCl}_{2}+\mathrm{Ti}$

Allow multiples

Mg changes oxidation state from 0 to +2 so electrons are lost / Ti changes oxidation state from +4 to 0 , so gains electrons

Allow
Oxidation state of $M g$ increases so it is a reducing agent
(c) Observation with MgCl_{2} : (slight) white ppt

Observation with BaCl_{2} : no (visible) change / colourless solution / no reaction

Do not allow nothing / no observation

Q4.
(a) Equation: $2 \mathrm{Mg}+\mathrm{TiCl}_{4} \rightarrow \mathrm{Ti}+2 \mathrm{MgCl}_{2}$

Allow multiples / ignore ss

Role: Reducing agent
Allow electron donor (not electron pair donor)
(b) M1: moles of water in $210 \mathrm{mg}=$ mass $/ \mathrm{mr}=0.210 / 18$ $=\underline{0.0117} \mathrm{~mol}$ ONLY

Equal to moles of magnesium hydroxide produced in stage one
M2: mass of $\mathrm{Mg}(\mathrm{OH})_{2}=0.0117 \times 58.3=0.680 \mathrm{~g}$
M3: mass of $\mathrm{MgO}=3.2-0.68$

$$
=2.52 \mathrm{~g}
$$

M1 = moles of water
$\boldsymbol{M 2}=$ mass of $\mathrm{Mg}(\mathrm{OH})_{2}=\mathbf{M 1} \times 58.3$
M3 = subtraction = 3.2- M2
M4 = answer to M3 \times 100/3.2
Accept correct alternative methods such as
M1 = moles of water
M2 $=$ mass of $\mathrm{Mg}(\mathrm{OH})_{2}=$ M1 $\times 58.3$
M3 = M2 x 100/3.2
M4 = 100 - M3
M4: \% of $\mathrm{MgO}=2.52 / 3.2 \times 100=78.7 \%$

M4: Allow 78.7-78.8 or 79 \%

Q5.
C

Q6.
C

Q7.
A

Q8.
B

Q9.
A

Q10.
A

Q11.
B

Q12.
B

Q13.
(a) $1 s^{2} 2 s^{2} 2 p^{6} 3 s^{2} 3 p^{6}\left(4 s^{0}\right)$
(b) M1 In $\mathrm{Ca}^{(+)}$(outer) electron(s) is further from nucleus

Or $\mathrm{Ca}^{(+)}$loses electron from a higher (energy) orbital

Or Ca ${ }^{(+)}$loses electron from a 4(s) orbital or 4th energy level or 4th energy shell and $\mathrm{K}^{(+)}$loses electron from a 3(p) orbital or 3rd energy level or 3rd energy shell
 Must be comparative
 Allow converse arguments

M2 More shielding (in Ca^{+})
(c) Be/Beryllium
(d) $\quad \mathrm{Mg}(\mathrm{OH})_{2}$
(e) $\mathrm{Ba}^{2+}+\mathrm{SO}_{4}{ }^{2-} \rightarrow \mathrm{BaSO}_{4}$

Ignore state symbols
$\mathrm{n} \mathrm{BaCl} 2(6 / 1000 \times 0.25)=1.5 \times 10^{-3}$ and $n \mathrm{Na}_{2} \mathrm{SO}_{4}=(8 / 1000 \times 0.15)=1.2$ $\times 10^{-3}$
and $\mathrm{BaCl}_{2} /$ barium chloride in excess
Working required or 3×10^{-4} of BaCl_{2}
$10 \mathrm{~cm}^{3}$ (of $0.15 \mathrm{~mol} \mathrm{dm}^{-3}$ sodium sulfate)
or $0.01 \mathrm{dm}^{3}$
(f) M1 Same electronic configuration / same number of electrons (in outer shell) / all have 37 electrons (1)

Ignore protons and neutrons unless incorrect numbers
Not just electrons determine chemical properties

```
86x+87x+88(100-2x)=87.7
\(100=87.7\)
```

M2
Alternative M2:
$\underline{86+87+88 y}=87.7$
$1+1+y$

M3 $\mathrm{x}=10 \%$ (or $\mathrm{x}=0.1$)
M3 $y=8$

M4 (\% abundance of 88 isotope is $100-2 \times 10)=80(.0) \%$
M4 \% of 88 isotope is $100-10 y=80(.0) \%$
Allow other alternative methods
(g) ${ }^{138} \mathrm{Ba}^{+}$

M2 $\mathrm{v}^{2}=\frac{\frac{2 K E}{m}}{=}=\frac{2 \times 3.65 \times 10^{-16}}{2.275 \times 10^{-25}}=3.2088 \times 10^{9}$

M3 $\quad \mathrm{v}=\sqrt{2 \mathrm{KE} / \mathrm{m}} \quad\left(\mathrm{v}=5.6646 \times 10^{4}\right)$
For expression with square root

M4 $\quad \mathrm{v}=\mathrm{d} / \mathrm{t}$ or $\mathrm{d}=\mathrm{vt}$ or with numbers

M5 $\mathrm{d}=\left(5.6646 \times 10^{4} \times 2.71 \times 10^{-5}\right)=1.53-1.54(\mathrm{~m})$
M5 must be to 3 sf
If not converted to kg , answer $=0.0485-0.0486$
(3sf). This scores 4 marks

Alternative method

$$
\text { M1 } \quad \begin{aligned}
m= & \frac{137 \times 10^{-3}}{6.022 \times 10^{23}}=2.275 \times 10^{-25} \\
& \text { M1 Calculation of } \mathrm{m} \text { in } \mathrm{kg}
\end{aligned}
$$

M2 $\quad \mathrm{v}=\mathrm{d} / \mathrm{t}$
M2, M3 and M4 are for algebraic expressions or correct expressions with numbers
$\frac{\mathrm{KE} \times 2 \mathrm{t}^{2}}{\mathrm{~m}}$
M3 $d^{2}=m$

M4 $\quad \mathrm{d}=\sqrt{\frac{K E x 2 t^{2}}{m}}\left(=\sqrt{ }\left(3.65 \times 10^{-16} \times 2 \times\left(2.71 \times 10^{-5}\right)^{2} / 2.275 \times 10^{-25}\right)\right)$

M5 $\mathrm{d}=1.53-1.54$ (m)
M5 must be to 3sf

Q14.

C

Q15.

(a) $\mathrm{BaCl}_{2} / \mathrm{Ba}(\mathrm{OH})_{2} / \mathrm{Ba}\left(\mathrm{NO}_{3}\right)_{2} / \mathrm{BaX} 2$ or names Ignore acidification but $C E=0 / 3$ if $\mathrm{H}_{2} \mathrm{SO}_{4}$
If reagent incorrect or blank then $\mathrm{CE}=0 / 3$
If Ba^{2+} or wrong formula, lose M1 and mark on
colourless solution / no (visible) change (nvc) / no ppt / no (visible) reaction Ignore nothing happens and no observation
white precipitate / white solid
(b) NaOH / sodium hydroxide / other Group 1 hydroxides

If reagent incorrect or blank then CE =0/3
If reagent incomplete, lose M1 and mark on
white precipitate / white solid
(white) ppt which dissolves in excess (NaOH)
If reagent is excess NaOH , allow colourless solution for M3

Alternative Method

Name or formula of Group 1 carbonate
white precipitate / white solid
(white) precipitate and effervescence
[6]

Q16.
(a) CO_{2} gas escapes or is lost
(b) Mass $\mathrm{CO}_{2}=16.11-14.58=1.53 \mathrm{~g}$
$\mathrm{Mr} \mathrm{CO}_{2}=44.0$
$\mathrm{Mol} \mathrm{CO} 2=1.53 / 44.0=3.48 \times 10^{-2}$
$\mathrm{Mol} \mathrm{SrCO} 33=3.48 \times 10^{-2}$

Mass $\mathrm{SrCO}_{3}=\mathrm{mol} \times \mathrm{Mr}=3.48 \times 10^{-2} \times 147.6$
Mass $\mathrm{SrCO}_{3}=5.13(\mathrm{~g})$
1 mark for the answer and 1 for 3 sf precision
Allow 5.14 g (as a result of rounding)
(c) Percentage error $={ }^{0.01 / 8.26} \times 100$
$=0.160$ (\%)
(d) Original Mass $\mathrm{SrO}=6.26-0.347-5.13$

$$
\begin{aligned}
& =0.783 \mathrm{~g}(\mathrm{or} 783 \mathrm{mg}) \\
& \text { OR } 6.26-0.347-4.85=1.063 \mathrm{~g} \\
& \\
& \text { Allow } 0.773 \mathrm{~g} \text { or } 773 \mathrm{mg} \text { (from rounding error in } \\
& \text { part (b) }
\end{aligned}
$$

Justification: All SrCO_{3} reacted because heated to constant mass.
(e) $3 \mathrm{SrO}+2 \mathrm{Al} \rightarrow \mathrm{Al}_{2} \mathrm{O}_{3}+3 \mathrm{Sr}$

Al acts as a reducing agent

Sr is collected as a vapour because
$\mathrm{Al}_{2} \mathrm{O}_{3}$ is an ionic lattice and so has strong ionic attractions

Than Sr which is a metallic structure with (relatively) weaker bonding

Q17.

(a) $\mathrm{Ca}+2 \mathrm{H}_{2} \mathrm{O} \rightarrow \mathrm{Ca}(\mathrm{OH})_{2}+\mathrm{H}_{2}$

8-12
(b) Decrease
(c) BaCl_{2}

Allow $\mathrm{Ba}\left(\mathrm{NO}_{3}\right)_{2}$ or other soluble barium salt

$$
\begin{aligned}
& \mathrm{Ba}^{2+}+\mathrm{SO}_{4}^{2-} \rightarrow \mathrm{BaSO}_{4} \\
& \quad \begin{array}{l}
\text { Allow equation if state symbols missing but } \\
\text { penalise if state symbols are incorrect }
\end{array}
\end{aligned}
$$

(d) Strong attraction

Between positive and negative ions

